std::asin(std::complex)
STD::Asin%28 std::Complex%29
Defined in header | | |
---|---|---|
template< class T > complex<T> asin( const complex<T>& z | | (since C++11) |
计算复值的复弧正弦z
.分支切割存在于间隔之外。-1;+1沿着真正的轴线。
参数
z | - | complex value |
---|
返回值
如果没有错误发生,则复弧正弦z
返回,在沿假想轴和间隔无界的条带范围内返回。-π/2;+π/2沿着真正的轴线。
处理错误和特殊情况时,就好像操作是由-i *
std::asinh
(i*z)
,在哪里i
是想象中的单位。
注记
逆正弦%28或弧正弦%29是一个多值函数,需要在复平面上进行分支切割。分支切割按惯例放置在实际轴的线段%28-∞,-1%29和%281,∞%29处。
弧正弦主值的数学定义为:Asin z=-i_ln%28_i_z+seari_z2
%29对于任何z,asin%28 z%29=acos%28-z%29-
π
*。
二
例
二次
#include <iostream>
#include <cmath>
#include <complex>
int main()
{
std::cout << std::fixed;
std::complex<double> z1(-2, 0
std::cout << "acos" << z1 << " = " << std::acos(z1) << '\n';
std::complex<double> z2(-2, -0.0
std::cout << "acos" << z2 << " (the other side of the cut) = "
<< std::acos(z2) << '\n';
// for any z, acos(z) = pi - acos(-z)
const double pi = std::acos(-1
std::complex<double> z3 = pi - std::acos(z2
std::cout << "cos(pi - acos" << z2 << ") = " << std::cos(z3) << '\n';
}
二次
产出:
二次
asin(-2.000000,0.000000) = (-1.570796,1.316958)
asin(-2.000000,-0.000000) (the other side of the cut) = (-1.570796,-1.316958)
sin(acos(-2.000000,-0.000000) - pi/2) = (-2.000000,-0.000000)
二次
另见
acos(std::complex) (C++11) | computes arc cosine of a complex number (arccos(z)) (function template) |
---|---|
atan(std::complex) (C++11) | computes arc tangent of a complex number (arctan(z)) (function template) |
sin(std::complex) | computes sine of a complex number (sin(z)) (function template) |
asin | computes arc sine (arcsin(x)) (function) |
asin(std::valarray) | applies the function std::asin to each element of valarray (function template) |
C为Casin编写的文件
© cppreference.com
在CreativeCommonsAttribution下授权-ShareAlike未移植许可v3.0。