Rational
class Rational
BigDecimal扩展了本地Rational类以提供to_d方法。
当您在应用程序中需要BigDecimal时,此方法将在Rational对象上可用。
一个有理数可以表示成一个成对的整数; a / b(b> 0)。a是分子,b是分母。整数等于理性a / 1在数学上。
在ruby中,您可以使用Rational创建合理的对象,#to_r,合理化方法或将r后缀到文字。返回值将是不可减少的。
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3)
3.to_r #=> (3/1)
2/3r #=> (2/3)
您还可以从浮点数字或字符串创建有理对象。
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
一个理性的对象是一个确切的数字,它可以帮助你编写没有任何舍入错误的程序。
10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
但是,当表达式具有不精确的因素(数值或操作)时,会产生不精确的结果。
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
公共类方法
json_create(object) Show source
通过将分子值n
分母值d
转换为Ration
al对象来反序列化JSON字符串。
# File ext/json/lib/json/add/rational.rb, line 10
def self.json_create(object)
Rational(object['n'], object['d'])
end
公共实例方法
rat * numeric → numeric Show source
执行乘法。
Rational(2, 3) * Rational(2, 3) #=> (4/9)
Rational(900) * Rational(1) #=> (900/1)
Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
Rational(9, 8) * 4 #=> (9/2)
Rational(20, 9) * 9.8 #=> 21.77777777777778
static VALUE
nurat_mul(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*'
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other)
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*'
}
}
else {
return rb_num_coerce_bin(self, other, '*'
}
}
rat ** numeric → numeric Show source
执行取幂。
Rational(2) ** Rational(3) #=> (8/1)
Rational(10) ** -2 #=> (1/100)
Rational(10) ** -2.0 #=> 0.01
Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i)
Rational(1, 2) ** 0 #=> (1/1)
Rational(1, 2) ** 0.0 #=> 1.0
static VALUE
nurat_expt(VALUE self, VALUE other)
{
if (k_numeric_p(other) && k_exact_zero_p(other))
return f_rational_new_bang1(CLASS_OF(self), ONE
if (k_rational_p(other)) {
get_dat1(other
if (f_one_p(dat->den))
other = dat->num; /* c14n */
}
/* Deal with special cases of 0**n and 1**n */
if (k_numeric_p(other) && k_exact_p(other)) {
get_dat1(self
if (f_one_p(dat->den)) {
if (f_one_p(dat->num)) {
return f_rational_new_bang1(CLASS_OF(self), ONE
}
else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) {
return f_rational_new_bang1(CLASS_OF(self), INT2FIX(f_odd_p(other) ? -1 : 1)
}
else if (INT_ZERO_P(dat->num)) {
if (rb_num_negative_p(other)) {
rb_num_zerodiv(
}
else {
return f_rational_new_bang1(CLASS_OF(self), ZERO
}
}
}
}
/* General case */
if (FIXNUM_P(other)) {
{
VALUE num, den;
get_dat1(self
if (INT_POSITIVE_P(other)) {
num = rb_int_pow(dat->num, other
den = rb_int_pow(dat->den, other
}
else if (INT_NEGATIVE_P(other)) {
num = rb_int_pow(dat->den, rb_int_uminus(other)
den = rb_int_pow(dat->num, rb_int_uminus(other)
}
else {
num = ONE;
den = ONE;
}
if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */
if (RB_FLOAT_TYPE_P(den)) return DBL2NUM(NAN
return num;
}
if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */
num = ZERO;
den = ONE;
}
return f_rational_new2(CLASS_OF(self), num, den
}
}
else if (RB_TYPE_P(other, T_BIGNUM)) {
rb_warn("in a**b, b may be too big"
return rb_float_pow(nurat_to_f(self), other
}
else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) {
return rb_float_pow(nurat_to_f(self), other
}
else {
return rb_num_coerce_bin(self, other, rb_intern("**")
}
}
rat + numeric → numeric Show source
执行添加。
Rational(2, 3) + Rational(2, 3) #=> (4/3)
Rational(900) + Rational(1) #=> (901/1)
Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
Rational(9, 8) + 4 #=> (41/8)
Rational(20, 9) + 9.8 #=> 12.022222222222222
VALUE
rb_rational_plus(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
dat->den
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other)
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+'
}
}
else {
return rb_num_coerce_bin(self, other, '+'
}
}
rat - numeric → numeric Show source
执行减法。
Rational(2, 3) - Rational(2, 3) #=> (0/1)
Rational(900) - Rational(1) #=> (899/1)
Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
Rational(9, 8) - 4 #=> (23/8)
Rational(20, 9) - 9.8 #=> -7.577777777777778
static VALUE
nurat_sub(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
dat->den
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other)
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-'
}
}
else {
return rb_num_coerce_bin(self, other, '-'
}
}
-rat → rational Show source
否定rat
。
VALUE
rb_rational_uminus(VALUE self)
{
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0
get_dat1(self
(void)unused;
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den
}
rat / numeric → numeric Show source
执行除法。
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv(
{
get_dat1(self
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/'
}
}
else if (RB_FLOAT_TYPE_P(other))
return DBL2NUM(nurat_to_double(self) / RFLOAT_VALUE(other)
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv(
{
get_dat2(self, other
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/'
}
}
else {
return rb_num_coerce_bin(self, other, '/'
}
}
rational <=> numeric → -1, 0, +1 or nil Show source
执行比较并返回-1,0或+1。
nil
如果两个值无法比较,则返回。
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2,3) <=> Rational(1,3) #=> 1
Rational(1,3) <=> 1 #=> -1
Rational(1,3) <=> 0.3 #=> 1
VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self
if (dat->den == LONG2FIX(1))
return rb_int_cmp(dat->num, other /* c14n */
other = f_rational_new_bang1(CLASS_OF(self), other
goto other_is_rational;
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other)
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
other_is_rational:
{
VALUE num1, num2;
get_dat2(self, other
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)
}
else {
num1 = rb_int_mul(adat->num, bdat->den
num2 = rb_int_mul(bdat->num, adat->den
}
return rb_int_cmp(rb_int_minus(num1, num2), ZERO
}
}
else {
return rb_num_coerce_cmp(self, other, rb_intern("<=>")
}
}
鼠标==对象→true或false显示源代码
如果鼠数等于对象,则返回true。
Rational(2, 3) == Rational(2, 3) #=> true
Rational(5) == 5 #=> true
Rational(0) == 0.0 #=> true
Rational('1/3') == 0.33 #=> false
Rational('1/2') == '1/2' #=> false
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
return rb_int_equal(dat->num, other
}
}
else if (RB_FLOAT_TYPE_P(other)) {
const double d = nurat_to_double(self
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other)))
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
return Qtrue;
return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
rb_int_equal(adat->den, bdat->den)
}
}
else {
return rb_equal(other, self
}
}
abs → rat Show source
返回的绝对值rat
。
(1/2r).abs #=> 1/2r (-1/2r).abs #=> 1/2r
#magnitude是#abs的别名。
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den
}
return self;
}
as_json(*) Show source
返回一个散列,它将变成一个JSON对象并表示这个对象。
# File ext/json/lib/json/add/rational.rb, line 16
def as_json(*)
{
JSON.create_id => self.class.name,
'n' => numerator,
'd' => denominator,
}
end
ceil → integer Show source
ceil(precision=0) → rational
返回截断值(朝正无穷大)。
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
'%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil
}
denominator → integer Show source
返回分母(总是正数)。
Rational(7).denominator #=> 1
Rational(7, 1).denominator #=> 1
Rational(9, -4).denominator #=> 4
Rational(-2, -10).denominator #=> 5
rat.numerator.gcd(rat.denominator) #=> 1
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self
return dat->den;
}
fdiv(numeric) → float Show source
执行除法并将其作为浮点值返回。
Rational(2, 3).fdiv(1) #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
Rational(2).fdiv(3) #=> 0.6666666666666666
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
VALUE div;
if (f_zero_p(other))
return DBL2NUM(nurat_to_double(self) / 0.0
if (FIXNUM_P(other) && other == LONG2FIX(1))
return nurat_to_f(self
div = nurat_div(self, other
if (RB_TYPE_P(div, T_RATIONAL))
return nurat_to_f(div
if (RB_FLOAT_TYPE_P(div))
return div;
return rb_funcall(div, rb_intern("to_f"), 0
}
floor → integer Show source
floor(precision=0) → rational
返回截断值(朝负无穷大)。
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
'%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor
}
inspect → string Show source
将该值作为字符串返回以进行检查。
Rational(2).inspect #=> "(2/1)"
Rational(-8, 6).inspect #=> "(-4/3)"
Rational('1/2').inspect #=> "(1/2)"
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("("
rb_str_concat(s, f_format(self, f_inspect)
rb_str_cat2(s, ")"
return s;
}
magnitude → rat Show source
返回的绝对值rat
。
(1/2r).abs #=> 1/2r (-1/2r).abs #=> 1/2r
#magnitude is an alias of #abs.
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den
}
return self;
}
negative? → true or false Show source
返回true
if rat
小于0。
static VALUE
nurat_negative_p(VALUE self)
{
get_dat1(self
return f_boolcast(INT_NEGATIVE_P(dat->num)
}
numerator → integer Show source
返回分子。
Rational(7).numerator #=> 7
Rational(7, 1).numerator #=> 7
Rational(9, -4).numerator #=> -9
Rational(-2, -10).numerator #=> 1
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self
return dat->num;
}
正?→true或false显示来源
true
如果rat
大于0,则返回。
static VALUE
nurat_positive_p(VALUE self)
{
get_dat1(self
return f_boolcast(INT_POSITIVE_P(dat->num)
}
quo(numeric) → numeric Show source
执行除法。
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv(
{
get_dat1(self
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/'
}
}
else if (RB_FLOAT_TYPE_P(other))
return DBL2NUM(nurat_to_double(self) / RFLOAT_VALUE(other)
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv(
{
get_dat2(self, other
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/'
}
}
else {
return rb_num_coerce_bin(self, other, '/'
}
}
rationalize → self Show source
rationalize(eps) → rational
如果给出可选参数eps(rat- | eps | <= result <= rat + | eps |),则返回该值的更简单的近似值,否则返回self。
r = Rational(5033165, 16777216)
r.rationalize #=> (5033165/16777216)
r.rationalize(Rational('0.01')) #=> (3/10)
r.rationalize(Rational('0.1')) #=> (1/3)
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (argc == 0)
return self;
if (nurat_negative_p(self))
return rb_rational_uminus(nurat_rationalize(argc, argv, rb_rational_uminus(self))
rb_scan_args(argc, argv, "01", &e
e = f_abs(e
a = f_sub(self, e
b = f_add(self, e
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q
return f_rational_new2(CLASS_OF(self), p, q
}
round → integer Show source
round(precision=0) → rational
返回截断值(朝向最接近的整数; 0.5 => 1; -0.5 => -1)。
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').round(+1) #=> "-123.500000"
'%f' % Rational('-123.456').round(-1) #=> "-120.000000"
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
VALUE opt;
enum ruby_num_rounding_mode mode = (
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
rb_num_get_rounding_option(opt)
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round
return f_round_common(argc, argv, self, round_func
}
to_d(precision) → bigdecimal Show source
将Rational转换为BigDecimal。
所需的precision
参数用于确定结果的有效位数。请参阅BigDecimal#div以获取更多信息,因为它与分母和precision
for参数一起使用。
r = (22/7.0).to_r
# => (7077085128725065/2251799813685248)
r.to_d(3)
# => 0.314e1
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 120
def to_d(precision)
if precision <= 0
raise ArgumentError, "negative precision"
end
num = self.numerator
BigDecimal(num).div(self.denominator, precision)
end
to_f → float Show source
以浮点形式返回值。
Rational(2).to_f #=> 2.0
Rational(9, 4).to_f #=> 2.25
Rational(-3, 4).to_f #=> -0.75
Rational(20, 3).to_f #=> 6.666666666666667
static VALUE
nurat_to_f(VALUE self)
{
return DBL2NUM(nurat_to_double(self)
}
to_i → integer Show source
以整数形式返回截断的值。
相当于
rat.truncate.
Rational(2, 3).to_i #=> 0
Rational(3).to_i #=> 3
Rational(300.6).to_i #=> 300
Rational(98,71).to_i #=> 1
Rational(-30,2).to_i #=> -15
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self
if (INT_NEGATIVE_P(dat->num))
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)
return rb_int_idiv(dat->num, dat->den
}
to_json(*) Show source
将类名(Ration
al)与分子值n
和分母值一起存储d
为JSON字符串
# File ext/json/lib/json/add/rational.rb, line 25
def to_json(*)
as_json.to_json
end
to_r → self Show source
Returns self.
Rational(2).to_r #=> (2/1)
Rational(-8, 6).to_r #=> (-4/3)
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
to_s → string Show source
以字符串形式返回值。
Rational(2).to_s #=> "2/1"
Rational(-8, 6).to_s #=> "-4/3"
Rational('1/2').to_s #=> "1/2"
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s
}
truncate → integer Show source
truncate(precision=0) → rational
返回截断值(趋近于零)。
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
'%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate
}