Matrix
Matrix类
Parent:ObjectIncluded modules:Enumerable
Matrix
类表示一个数学矩阵。它提供了创建矩阵的方法,以算术和代数方式对它们进行操作,并确定它们的数学属性(迹,秩,反,行列式)。
方法目录
创建一个矩阵:
- Matrix
- ::[]
- ::rows(rows, copy = true)
- ::columns
- ::build(row_count, #column_count, &block)
- ::diagonal
- ::scalar(n, value)
- ::identity
- ::unit
- Matrix.I(n)
- ::zero
- ::row_vector
- ::column_vector
- ::empty(row_count, #column_count)
- ::hstack
- ::vstack
To access Matrix elements/columns/rows/submatrices/properties:
- [](i, j)
- row_count (row_size)
- column_count (column_size)
- row(i)
- column(j)
- collect
- map
- each
- each_with_index
- find_index
- minor(*param)
- first_minor(row, column)
- cofactor(row, column)
- adjugate
- laplace_expansion(row_or_column: num)
- cofactor_expansion(row_or_column: num)
矩阵的属性:
- diagonal?
- empty?
- hermitian?
- lower_triangular?
- normal?
- orthogonal?
- permutation?
- real?
- regular?
- singular?
- square?
- symmetric?
- unitary?
- upper_triangular?
- zero?Matrix arithmetic:
- #*(m)
- #+(m)
- #-(m)
- #/(m)
- inverse
- inv
- #**
- #+@
- #-@
矩阵功能:
- determinant
- det
- hstack(*matrices)
- rank
- round
- trace
- tr
- transpose
- t
- vstack(*matrices)
矩阵分解:
- eigen
- eigensystem
- lup
- lup_decomposition
复杂的算术:
- conj
- conjugate
- imag
- imaginary
- real
- rect
- rectangularConversion to other data types:
- coerce(other)
- row_vectors
- column_vectors
- to_aString representations:
- to_s
- inspects
- :all(默认):产生所有元素
- :diagonal:仅产生对角线上的元素
- :off_diagonal:产生除对角线外的所有元素
- :lower:仅产生对角线上或下方的元素
- :strict_lower:只产生对角线以下的元素
- :strict_upper:只产生对角线以上的元素
- :upper:只产生对角线上的元素
Matrix[ 1,2, 3,4 ].each { |e| puts e }
=> prints the numbers 1 to 4
Matrix[ 1,2, 3,4 ].each(:strict_lower).to_a # => 3
# File lib/matrix.rb, line 462
def each(which = :all) # :yield: e
return to_enum :each, which unless block_given?
last = column_count - 1
case which
when :all
block = Proc.new
@rows.each do |row|
row.each(&block)
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index] unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index]
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index]
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index]
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index]
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
each_with_index(which = :all) { |e, row, column| ... } Show source
与每个元素相同,除了元素之外,还包括行索引和列索引
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
puts "#{e} at #{row}, #{col}"
end
# => Prints:
# 1 at 0, 0
# 2 at 0, 1
# 3 at 1, 0
# 4 at 1, 1
# File lib/matrix.rb, line 523
def each_with_index(which = :all) # :yield: e, row, column
return to_enum :each_with_index, which unless block_given?
last = column_count - 1
case which
when :all
@rows.each_with_index do |row, row_index|
row.each_with_index do |e, col_index|
yield e, row_index, col_index
end
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}, row_index, row_index
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index], row_index, col_index unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
eigen()
别名r: eigensystem
eigensystem() Show source
返回矩阵的Eigensystem; 见EigenvalueDecomposition
。
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
# File lib/matrix.rb, line 1369
def eigensystem
EigenvalueDecomposition.new(self)
end
别名: eigen
element(i, j)
别名: []
elements_to_f() Show source
# File lib/matrix.rb, line 1490
def elements_to_f
warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
map(&:to_f)
end
elements_to_i() Show source
# File lib/matrix.rb, line 1495
def elements_to_i
warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
map(&:to_i)
end
elements_to_r() Show source
# File lib/matrix.rb, line 1500
def elements_to_r
warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
map(&:to_r)
end
empty?() Show source
如果这是一个空的矩阵,即,如果行数或列数是0返回true
,。
# File lib/matrix.rb, line 755
def empty?
column_count == 0 || row_count == 0
end
eql?(other) Show source
# File lib/matrix.rb, line 920
def eql?(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows.eql? other.rows
end
find_index(*args)
别名: index
first_minor(row, column) Show source
返回通过删除指定的行和列而获得的子矩阵。
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
=> 9 0 0
0 0 0
0 0 4
# File lib/matrix.rb, line 658
def first_minor(row, column)
raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
unless 0 <= row && row < row_count
raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
end
unless 0 <= column && column < column_count
raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
end
arrays = to_a
arrays.delete_at(row)
arrays.each do |array|
array.delete_at(column)
end
new_matrix arrays, column_count - 1
end
hash() Show source
返回矩阵的散列码。
# File lib/matrix.rb, line 938
def hash
@rows.hash
end
hermitian?() Show source
如果这是一个厄密矩阵,则返回true
。如果矩阵不是正方形,则会引发错误。
# File lib/matrix.rb, line 763
def hermitian?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:upper).all? do |e, row, col|
e == rows[col][row].conj
end
end
hstack(*matrices) Show source
返回一个新的矩阵,通过水平叠加给定矩阵的接收器
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
# File lib/matrix.rb, line 1260
def hstack(*matrices)
self.class.hstack(self, *matrices)
end
imag()
别名: imaginary
imaginary() Show source
返回矩阵的虚部。
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
=> 2i i 0
0 0 0
# File lib/matrix.rb, line 1416
def imaginary
collect(&:imaginary)
end
别名: imag
index(value, selector = :all) → row, column()
index(selector = :all){ block } → row, column
index(selector = :all) → an_enumerator
index方法专用于将索引作为行,列返回。它还接受可选的选择器参数,请参阅每个参数以获取详细信息。
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
# File lib/matrix.rb, line 586
def index(*args)
raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
return to_enum :find_index, which, *args unless block_given? || args.size == 1
if args.size == 1
value = args.first
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if e == value
end
else
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if yield e
end
end
nil
end
别名: find_index
inspect() Show source
覆盖对象#检查
# File lib/matrix.rb, line 1525
def inspect
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}#{@rows.inspect}"
end
end
inv()
别名: inverse
inverse() Show source
返回矩阵的逆。
Matrix[[-1, -1], [0, -1]].inverse
=> -1 1
0 -1
# File lib/matrix.rb, line 1059
def inverse
Matrix.Raise ErrDimensionMismatch unless square?
self.class.I(row_count).send(:inverse_from, self)
end
别名: inv
laplace_expansion(row: nil, column: nil) Show source
沿给定的行或列返回拉普拉斯扩展。
Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
=> Vector[3, -2]
# File lib/matrix.rb, line 717
def laplace_expansion(row: nil, column: nil)
num = row || column
if !num || (row && column)
raise ArgumentError, "exactly one the row or column arguments must be specified"
end
Matrix.Raise ErrDimensionMismatch unless square?
raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
unless 0 <= num && num < row_count
raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
end
send(row ? :row : :column, num).map.with_index { |e, k|
e * cofactor(*(row ? [num, k] : [k,num]))
}.inject(:+)
end
别名: cofactor_expansion
lower_triangular?() Show source
如果这是一个下三角矩阵,则返回true
。
# File lib/matrix.rb, line 773
def lower_triangular?
each(:strict_upper).all?(&:zero?)
end
lup() Show source
返回矩阵的LUP分解; 见LUPDecomposition
。
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
# File lib/matrix.rb, line 1384
def lup
LUPDecomposition.new(self)
end
别名: lup_decomposition
lup_decomposition()
别名: lup
map()
别名: collect
minor(*param) Show source
返回矩阵的一部分。参数是:
- start_row, nrows, start_col, ncols; OR
- row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
=> 9 0 0
0 5 0
像数组#[]一样,负索引从行或列的末尾向后计数(-1是最后一个元素)。如果起始行或列分别大于#row_count或#column_count,则返回nil。
# File lib/matrix.rb, line 617
def minor(*param)
case param.size
when 2
row_range, col_range = param
from_row = row_range.first
from_row += row_count if from_row < 0
to_row = row_range.end
to_row += row_count if to_row < 0
to_row += 1 unless row_range.exclude_end?
size_row = to_row - from_row
from_col = col_range.first
from_col += column_count if from_col < 0
to_col = col_range.end
to_col += column_count if to_col < 0
to_col += 1 unless col_range.exclude_end?
size_col = to_col - from_col
when 4
from_row, size_row, from_col, size_col = param
return nil if size_row < 0 || size_col < 0
from_row += row_count if from_row < 0
from_col += column_count if from_col < 0
else
raise ArgumentError, param.inspect
end
return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
rows = @rows[from_row, size_row].collect{|row|
row[from_col, size_col]
}
new_matrix rows, [column_count - from_col, size_col].min
end
normal?() Show source
如果这是一个常规矩阵,则返回true
。如果矩阵不是正方形,则会引发错误。
# File lib/matrix.rb, line 781
def normal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
rows.each_with_index do |row_k, k|
s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
end
return false unless s == 0
end
end
true
end
orthogonal?() Show source
如果这是一个正交矩阵,则返回true
,如果矩阵不是平方,则引发一个错误。
# File lib/matrix.rb, line 799
def orthogonal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k] * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
permutation?() Show source
如果这是置换矩阵,则返回true
,如果矩阵不是平方,则返回错误。
# File lib/matrix.rb, line 817
def permutation?
Matrix.Raise ErrDimensionMismatch unless square?
cols = Array.new(column_count)
rows.each_with_index do |row, i|
found = false
row.each_with_index do |e, j|
if e == 1
return false if found || cols[j]
found = cols[j] = true
elsif e != 0
return false
end
end
return false unless found
end
true
end
rank() Show source
返回矩阵的等级。请注意,使用Float值会因为精度不够而产生错误的结果。考虑使用类似Rational或BigDecimal的确切类型。
Matrix[[7,6], [3,9]].rank
=> 2
# File lib/matrix.rb, line 1273
def rank
# We currently use Bareiss' multistep integer-preserving gaussian elimination
# (see comments on determinant)
a = to_a
last_column = column_count - 1
last_row = row_count - 1
pivot_row = 0
previous_pivot = 1
0.upto(last_column) do |k|
switch_row = (pivot_row .. last_row).find {|row|
a[row][k] != 0
}
if switch_row
a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
pivot = a[pivot_row][k]
(pivot_row+1).upto(last_row) do |i|
ai = a[i]
(k+1).upto(last_column) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
end
end
pivot_row += 1
previous_pivot = pivot
end
end
pivot_row
end
rank_e() Show source
deprecated; use #rank
# File lib/matrix.rb, line 1304
def rank_e
warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
rank
end
real() Show source
返回矩阵的实部。
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
=> 1 0 0
1 2 3
# File lib/matrix.rb, line 1430
def real
collect(&:real)
end
real?() Show source
如果矩阵的所有条目都是实数,则返回true
。
# File lib/matrix.rb, line 838
def real?
all?(&:real?)
end
rect() Show source
返回包含与矩阵的实部和虚部对应的矩阵的数组
m.rect == m.real, m.imag # ==> true for all matrices m
# File lib/matrix.rb, line 1440
def rect
[real, imag]
end
别名: rectangular
rectangular()
别名: rect
regular?() Show source
如果这是一个常规(即非奇异)矩阵,则返回true
。
# File lib/matrix.rb, line 845
def regular?
not singular?
end
round(ndigits=0) Show source
返回一个矩阵,其中的条目四舍五入到给定的精度(请参见Float#round)
# File lib/matrix.rb, line 1312
def round(ndigits=0)
map{|e| e.round(ndigits)}
end
row(i) { |e| ... } Show source
i
将矩阵的行向量数作为向量返回(从数组开始,从0开始)。当给出一个块时,该向量的元素被迭代。
# File lib/matrix.rb, line 402
def row(i, &block) # :yield: e
if block_given?
@rows.fetch(i){return self}.each(&block)
self
else
Vector.elements(@rows.fetch(i){return nil})
end
end
row_count() Show source
返回行数。
# File lib/matrix.rb, line 387
def row_count
@rows.size
end
另外别名为:row_size
row_size()
别名为:row_count
row_vectors() Show source
返回矩阵的行向量数组。请参阅矢量。
# File lib/matrix.rb, line 1468
def row_vectors
Array.new(row_count) {|i|
row(i)
}
end
singular?() Show source
如果这是一个奇异矩阵,则返回true
。
# File lib/matrix.rb, line 852
def singular?
determinant == 0
end
square?() Show source
如果这是一个方形矩阵,则返回true
。
# File lib/matrix.rb, line 859
def square?
column_count == row_count
end
symmetric?() Show source
如果这是一个对称矩阵,则返回true
。如果矩阵不是正方形,则会引发错误。
# File lib/matrix.rb, line 867
def symmetric?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:strict_upper) do |e, row, col|
return false if e != rows[col][row]
end
true
end
t()
别名: transpose
to_a() Show source
返回描述矩阵行的数组数组。
# File lib/matrix.rb, line 1486
def to_a
@rows.collect(&:dup)
end
to_s() Show source
Overrides Object#to_s
# File lib/matrix.rb, line 1512
def to_s
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}[" + @rows.collect{|row|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
}.join(", ")+"]"
end
end
tr()
别名r: trace
trace() Show source
返回矩阵的迹线(对角线元素的总和)。
Matrix[[7,6], [3,9]].trace
=> 16
# File lib/matrix.rb, line 1321
def trace
Matrix.Raise ErrDimensionMismatch unless square?
(0...column_count).inject(0) do |tr, i|
tr + @rows[i][i]
end
end
别名: tr
transpose() Show source
返回矩阵的转置。
Matrix[[1,2], [3,4], [5,6]]
=> 1 2
3 4
5 6
Matrix[[1,2], [3,4], [5,6]].transpose
=> 1 3 5
2 4 6
# File lib/matrix.rb, line 1339
def transpose
return self.class.empty(column_count, 0) if row_count.zero?
new_matrix @rows.transpose, row_count
end
别名: t
unitary?() Show source
如果这是一个酉矩阵,则返回true
,如果矩阵不是平方,则返回一个错误。
# File lib/matrix.rb, line 879
def unitary?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k].conj * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
upper_triangular?() Show source
如果这是一个上三角矩阵,则返回true
。
# File lib/matrix.rb, line 896
def upper_triangular?
each(:strict_lower).all?(&:zero?)
end
vstack(*matrices) Show source
通过垂直堆叠给定矩阵的接收器返回一个新矩阵
x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
# File lib/matrix.rb, line 1353
def vstack(*matrices)
self.class.vstack(self, *matrices)
end
zero?() Show source
如果这是一个只有零元素的矩阵,则返回true
# File lib/matrix.rb, line 903
def zero?
all?(&:zero?)
end
私有实例方法
[]=(i, j, v) Show source
# File lib/matrix.rb, line 377
def []=(i, j, v)
@rows[i][j] = v
end
别名: set_element, set_component
determinant_bareiss() Show source
Private. Use #determinant
使用Bareiss'多步整数保持高斯消除法返回矩阵的行列式。它具有与标准高斯消元相同的计算成本阶数O(n ^ 3)。中间结果是免费的,且复杂度较低。整数矩阵的中间结果也是整数,较小的二元数(如果有的话),而浮点矩阵通常具有更好精度的中间结果。
# File lib/matrix.rb, line 1215
def determinant_bareiss
size = row_count
last = size - 1
a = to_a
no_pivot = Proc.new{ return 0 }
sign = +1
pivot = 1
size.times do |k|
previous_pivot = pivot
if (pivot = a[k][k]) == 0
switch = (k+1 ... size).find(no_pivot) {|row|
a[row][k] != 0
}
a[switch], a[k] = a[k], a[switch]
pivot = a[k][k]
sign = -sign
end
(k+1).upto(last) do |i|
ai = a[i]
(k+1).upto(last) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
end
end
end
sign * pivot
end
set_component(i, j, v)
别名: []=
set_element(i, j, v)
别名: []=