排序算法 | sort
Package sort
import "sort"
- 概况
- 索引
- 例子
概况
程序包排序为排序切片和用户定义的集合提供原语。
例
package main
import (
"fmt"
"sort"
)
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%s: %d", p.Name, p.Age)
}
// ByAge implements sort.Interface for []Person based on
// the Age field.
type ByAge []Person
func (a ByAge) Len() int { return len(a) }
func (a ByAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }
func main() {
people := []Person{
{"Bob", 31},
{"John", 42},
{"Michael", 17},
{"Jenny", 26},
}
fmt.Println(people)
sort.Sort(ByAge(people))
fmt.Println(people)
}
示例(SortKeys)
ExampleSortKeys 演示了一种使用可编程排序标准对结构类型进行排序的技术。
package main
import (
"fmt"
"sort"
)
// A couple of type definitions to make the units clear.
type earthMass float64
type au float64
// A Planet defines the properties of a solar system object.
type Planet struct {
name string
mass earthMass
distance au
}
// By is the type of a "less" function that defines the ordering of its Planet arguments.
type By func(p1, p2 *Planet) bool
// Sort is a method on the function type, By, that sorts the argument slice according to the function.
func (by By) Sort(planets []Planet) {
ps := &planetSorter{
planets: planets,
by: by, // The Sort method's receiver is the function (closure) that defines the sort order.
}
sort.Sort(ps)
}
// planetSorter joins a By function and a slice of Planets to be sorted.
type planetSorter struct {
planets []Planet
by func(p1, p2 *Planet) bool // Closure used in the Less method.
}
// Len is part of sort.Interface.
func (s *planetSorter) Len() int {
return len(s.planets)
}
// Swap is part of sort.Interface.
func (s *planetSorter) Swap(i, j int) {
s.planets[i], s.planets[j] = s.planets[j], s.planets[i]
}
// Less is part of sort.Interface. It is implemented by calling the "by" closure in the sorter.
func (s *planetSorter) Less(i, j int) bool {
return s.by(&s.planets[i], &s.planets[j])
}
var planets = []Planet{
{"Mercury", 0.055, 0.4},
{"Venus", 0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", 0.107, 1.5},
}
// ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
func main() {
// Closures that order the Planet structure.
name := func(p1, p2 *Planet) bool {
return p1.name < p2.name
}
mass := func(p1, p2 *Planet) bool {
return p1.mass < p2.mass
}
distance := func(p1, p2 *Planet) bool {
return p1.distance < p2.distance
}
decreasingDistance := func(p1, p2 *Planet) bool {
return !distance(p1, p2)
}
// Sort the planets by the various criteria.
By(name).Sort(planets)
fmt.Println("By name:", planets)
By(mass).Sort(planets)
fmt.Println("By mass:", planets)
By(distance).Sort(planets)
fmt.Println("By distance:", planets)
By(decreasingDistance).Sort(planets)
fmt.Println("By decreasing distance:", planets)
}
示例(SortMultiKeys)
ExampleMultiKeys 演示了一种技术,用于在比较中使用不同组的多个字段对结构类型进行排序。我们将“较少”功能链接在一起,每个功能都比较一个字段。
package main
import (
"fmt"
"sort"
)
// A Change is a record of source code changes, recording user, language, and delta size.
type Change struct {
user string
language string
lines int
}
type lessFunc func(p1, p2 *Change) bool
// multiSorter implements the Sort interface, sorting the changes within.
type multiSorter struct {
changes []Change
less []lessFunc
}
// Sort sorts the argument slice according to the less functions passed to OrderedBy.
func (ms *multiSorter) Sort(changes []Change) {
ms.changes = changes
sort.Sort(ms)
}
// OrderedBy returns a Sorter that sorts using the less functions, in order.
// Call its Sort method to sort the data.
func OrderedBy(less ...lessFunc) *multiSorter {
return &multiSorter{
less: less,
}
}
// Len is part of sort.Interface.
func (ms *multiSorter) Len() int {
return len(ms.changes)
}
// Swap is part of sort.Interface.
func (ms *multiSorter) Swap(i, j int) {
ms.changes[i], ms.changes[j] = ms.changes[j], ms.changes[i]
}
// Less is part of sort.Interface. It is implemented by looping along the
// less functions until it finds a comparison that is either Less or
// !Less. Note that it can call the less functions twice per call. We
// could change the functions to return -1, 0, 1 and reduce the
// number of calls for greater efficiency: an exercise for the reader.
func (ms *multiSorter) Less(i, j int) bool {
p, q := &ms.changes[i], &ms.changes[j]
// Try all but the last comparison.
var k int
for k = 0; k < len(ms.less)-1; k++ {
less := ms.less[k]
switch {
case less(p, q):
// p < q, so we have a decision.
return true
case less(q, p):
// p > q, so we have a decision.
return false
}
// p == q; try the next comparison.
}
// All comparisons to here said "equal", so just return whatever
// the final comparison reports.
return ms.less[k](p, q)
}
var changes = []Change{
{"gri", "Go", 100},
{"ken", "C", 150},
{"glenda", "Go", 200},
{"rsc", "Go", 200},
{"r", "Go", 100},
{"ken", "Go", 200},
{"dmr", "C", 100},
{"r", "C", 150},
{"gri", "Smalltalk", 80},
}
// ExampleMultiKeys demonstrates a technique for sorting a struct type using different
// sets of multiple fields in the comparison. We chain together "Less" functions, each of
// which compares a single field.
func main() {
// Closures that order the Change structure.
user := func(c1, c2 *Change) bool {
return c1.user < c2.user
}
language := func(c1, c2 *Change) bool {
return c1.language < c2.language
}
increasingLines := func(c1, c2 *Change) bool {
return c1.lines < c2.lines
}
decreasingLines := func(c1, c2 *Change) bool {
return c1.lines > c2.lines // Note: > orders downwards.
}
// Simple use: Sort by user.
OrderedBy(user).Sort(changes)
fmt.Println("By user:", changes)
// More examples.
OrderedBy(user, increasingLines).Sort(changes)
fmt.Println("By user,<lines:", changes)
OrderedBy(user, decreasingLines).Sort(changes)
fmt.Println("By user,>lines:", changes)
OrderedBy(language, increasingLines).Sort(changes)
fmt.Println("By language,<lines:", changes)
OrderedBy(language, increasingLines, user).Sort(changes)
fmt.Println("By language,<lines,user:", changes)
}
示例(SortWrapper)
package main
import (
"fmt"
"sort"
)
type Grams int
func (g Grams) String() string { return fmt.Sprintf("%dg", int(g)) }
type Organ struct {
Name string
Weight Grams
}
type Organs []*Organ
func (s Organs) Len() int { return len(s) }
func (s Organs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// ByName implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByName struct{ Organs }
func (s ByName) Less(i, j int) bool { return s.Organs[i].Name < s.Organs[j].Name }
// ByWeight implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByWeight struct{ Organs }
func (s ByWeight) Less(i, j int) bool { return s.Organs[i].Weight < s.Organs[j].Weight }
func main() {
s := []*Organ{
{"brain", 1340},
{"heart", 290},
{"liver", 1494},
{"pancreas", 131},
{"prostate", 62},
{"spleen", 162},
}
sort.Sort(ByWeight{s})
fmt.Println("Organs by weight:")
printOrgans(s)
sort.Sort(ByName{s})
fmt.Println("Organs by name:")
printOrgans(s)
}
func printOrgans(s []*Organ) {
for _, o := range s {
fmt.Printf("%-8s (%v)\n", o.Name, o.Weight)
}
}
索引
- func Float64s(a []float64)
- func Float64sAreSorted(a []float64) bool
- func Ints(a []int)
- func IntsAreSorted(a []int) bool
- func IsSorted(data Interface) bool
- func Search(n int, f func(int) bool) int
- func SearchFloat64s(a []float64, x float64) int
- func SearchInts(a []int, x int) int
- func SearchStrings(a []string, x string) int
- func Slice(slice interface{}, less func(i, j int) bool)
- func SliceIsSorted(slice interface{}, less func(i, j int) bool) bool
- func SliceStable(slice interface{}, less func(i, j int) bool)
- func Sort(data Interface)
- func Stable(data Interface)
- func Strings(a []string)
- func StringsAreSorted(a []string) bool
- type Float64Slice
- func (p Float64Slice) Len() int
- func (p Float64Slice) Less(i, j int) bool
- func (p Float64Slice) Search(x float64) int
- func (p Float64Slice) Sort()
- func (p Float64Slice) Swap(i, j int)
- type IntSlice
- func (p IntSlice) Len() int
- func (p IntSlice) Less(i, j int) bool
- func (p IntSlice) Search(x int) int
- func (p IntSlice) Sort()
- func (p IntSlice) Swap(i, j int)
- type Interface
- func Reverse(data Interface) Interface
- type StringSlice
- func (p StringSlice) Len() int
- func (p StringSlice) Less(i, j int) bool
- func (p StringSlice) Search(x string) int
- func (p StringSlice) Sort()
- func (p StringSlice) Swap(i, j int)
例子
Package
包文件
search.go sort.go zfuncversion.go
func Float64sSource
func Float64s(a []float64)
Float64 以递增顺序对一片 float64 进行排序(非数字值被视为小于其他值)。
func Float64sAreSortedSource
func Float64sAreSorted(a []float64) bool
Float64sAreSorted 测试是否按增量顺序对一段 float64 进行排序(非数字值被视为小于其他值)。
func IntsSource
func Ints(a []int)
Ints 按递增顺序排序一部分整数。
例
package main
import (
"fmt"
"sort"
)
func main() {
s := []int{5, 2, 6, 3, 1, 4} // unsorted
sort.Ints(s)
fmt.Println(s)
}
func IntsAreSortedSource
func IntsAreSorted(a []int) bool
IntsAreSorted 测试是否按升序对整片进行排序。
func IsSortedSource
func IsSorted(data Interface) bool
IsSorted 报告数据是否被排序。
func SearchSource
func Search(n int, f func(int) bool) int
假设在 [0,n),f(i)== true 的范围内,Search 使用二进制搜索来查找并返回 f(i)为真的 [0,n)中的最小索引 i,意味着 f(i + 1)== true 。也就是说,搜索要求 f 对于输入范围 [0,n)的某些(可能为空)前缀为假,对于(可能为空)余数为真; 搜索返回第一个真正的索引。如果没有这样的索引,Search 返回 n 。(请注意,“未找到”返回值不是-1,例如 strings.Index 。)仅在 i [0,n] 范围内搜索调用 f(i)。
Search 的一个常见用途是在排序的,可索引的数据结构(如数组或片段)中为值 x 找到索引 i 。在这种情况下,参数 f(通常是闭包)捕获要搜索的值,以及数据结构如何编制索引和排序。
例如,给定按升序排序的片数据,调用 Search(len(data),func(i int)bool { return datai> = 23})返回最小的索引 i,使得 datai> = 23。如果调用者要查找23是否在分片中,它必须分别测试 datai == 23。
搜索按降序排序的数据将使用<=运算符而不是> =运算符。
为了完成上面的例子,下面的代码试图在一个整数片数据中按升序排序找到值 x:
x := 23
i := sort.Search(len(data), func(i int) bool { return data[i] >= x })
if i < len(data) && data[i] == x {
// x is present at data[i]
} else {
// x is not present in data,
// but i is the index where it would be inserted.
}
作为一个更奇特的例子,这个程序猜测你的号码:
func GuessingGame() {
var s string
fmt.Printf("Pick an integer from 0 to 100.\n")
answer := sort.Search(100, func(i int) bool {
fmt.Printf("Is your number <= %d? ", i)
fmt.Scanf("%s", &s)
return s != "" && s[0] == 'y'
})
fmt.Printf("Your number is %d.\n", answer)
}
例
此示例演示如何搜索按升序排序的列表。
package main
import (
"fmt"
"sort"
)
func main() {
a := []int{1, 3, 6, 10, 15, 21, 28, 36, 45, 55}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] >= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
}
示例(降序)
此示例演示搜索按降序排列的列表。该方法与按升序搜索列表相同,但条件反转。
package main
import (
"fmt"
"sort"
)
func main() {
a := []int{55, 45, 36, 28, 21, 15, 10, 6, 3, 1}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] <= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
}
func SearchFloat64sSource
func SearchFloat64s(a []float64, x float64) int
SearchFloat64s 在已排序的 float64s 片段中搜索 x,并返回 Search 所指定的索引。如果 x 不存在(它可能是len(a)),则返回值是插入x的索引。切片必须按升序排序。
func SearchIntsSource
func SearchInts(a []int, x int) int
SearchInts 在已排序的整数片段中搜索 x,并返回 Search 所指定的索引。如果 x 不存在(它可能是 len(a)),则返回值是插入 x 的索引。切片必须按升序排序。
func SearchStringsSource
func SearchStrings(a []string, x string) int
SearchStrings 在已排序的字符串片段中搜索 x,并返回 Search 所指定的索引。如果 x 不存在(它可能是 len(a)),则返回值是插入 x 的索引。切片必须按升序排序。
func SliceSource
func Slice(slice interface{}, less func(i, j int) bool)
由于提供了较少的功能,Slice 会对提供的切片进行排序。
排序不保证稳定。为了稳定排序,请使用 SliceStable。
如果提供的接口不是切片,则函数发生混乱。
例
package main
import (
"fmt"
"sort"
)
func main() {
people := []struct {
Name string
Age int
}{
{"Gopher", 7},
{"Alice", 55},
{"Vera", 24},
{"Bob", 75},
}
sort.Slice(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
sort.Slice(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age:", people)
}
func SliceIsSortedSource
func SliceIsSorted(slice interface{}, less func(i, j int) bool) bool
SliceIsSorted 测试是否对切片进行排序。
如果提供的接口不是切片,则函数发生混乱。
func SliceStableSource
func SliceStable(slice interface{}, less func(i, j int) bool)
SliceStable 根据提供的 less 函数对提供的 slice 进行排序,同时保持相同元素的原始顺序。
如果提供的接口不是切片,则函数发生混乱。
例
package main
import (
"fmt"
"sort"
)
func main() {
people := []struct {
Name string
Age int
}{
{"Alice", 25},
{"Elizabeth", 75},
{"Alice", 75},
{"Bob", 75},
{"Alice", 75},
{"Bob", 25},
{"Colin", 25},
{"Elizabeth", 25},
}
// Sort by name, preserving original order
sort.SliceStable(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
// Sort by age preserving name order
sort.SliceStable(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age,name:", people)
}
func SortSource
func Sort(data Interface)
对排序数据进行排序。它调用 data.Len 来确定 n 和 O(n * log(n))对 data.Less 和 data.Swap 的调用。排序不保证稳定。
func StableSource
func Stable(data Interface)
稳定排序数据,同时保持相同元素的原始顺序。
它调用 data.Len 来确定调用 data.Less 和 O(n * log(n)* log(n))调用 data.Swap 的 n,O(n * log(n))调用。
func StringsSource
func Strings(a []string)
Strings 按递增顺序排序一部分字符串。
例
package main
import (
"fmt"
"sort"
)
func main() {
s := []string{"Go", "Bravo", "Gopher", "Alpha", "Grin", "Delta"}
sort.Strings(s)
fmt.Println(s)
}
func StringsAreSortedSource
func StringsAreSorted(a []string) bool
StringsAreSorted 测试一串字符串是否按递增顺序排序。
type Float64SliceSource
Float64Slice 将接口的方法附加到 [] float64,按递增顺序进行排序(非数字值被视为小于其他值)。
type Float64Slice []float64
func (Float64Slice) LenSource
func (p Float64Slice) Len() int
func (Float64Slice) LessSource
func (p Float64Slice) Less(i, j int) bool
func (Float64Slice) SearchSource
func (p Float64Slice) Search(x float64) int
搜索返回应用 SearchFloat64s 到接收器和 x 的结果。
func (Float64Slice) SortSource
func (p Float64Slice) Sort()
排序是一种方便的方法。
func (Float64Slice) SwapSource
func (p Float64Slice) Swap(i, j int)
type IntSliceSource
IntSlice 将接口的方法附加到 [] int,按升序排序。
type IntSlice []int
func (IntSlice) LenSource
func (p IntSlice) Len() int
func (IntSlice) LessSource
func (p IntSlice) Less(i, j int) bool
func (IntSlice) SearchSource
func (p IntSlice) Search(x int) int
Search 返回将 SearchInts 应用于接收者和 x 的结果。
func (IntSlice) SortSource
func (p IntSlice) Sort()
Sort 是一种方便的方法。
func (IntSlice) SwapSource
func (p IntSlice) Swap(i, j int)
type InterfaceSource
一个类型,通常是一个集合,满足 sort.Interface 可以按照这个包中的例程进行排序。这些方法要求集合的元素由整数索引枚举。
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with
// index i should sort before the element with index j.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}
func ReverseSource
func Reverse(data Interface) Interface
Reverse 返回数据的相反顺序。
例
package main
import (
"fmt"
"sort"
)
func main() {
s := []int{5, 2, 6, 3, 1, 4} // unsorted
sort.Sort(sort.Reverse(sort.IntSlice(s)))
fmt.Println(s)
}
type StringSliceSource
StringSlice 将接口的方法附加到 []字符串,按升序排序。
type StringSlice []string
func (StringSlice) LenSource
func (p StringSlice) Len() int
func (StringSlice) LessSource
func (p StringSlice) Less(i, j int) bool
func (StringSlice) SearchSource
func (p StringSlice) Search(x string) int
Search 返回将 SearchStrings 应用于接收者和 x 的结果。
func (StringSlice) SortSource
func (p StringSlice) Sort()
Sort 是一种方便的方法。
func (StringSlice) SwapSource
func (p StringSlice) Swap(i, j int)