Math
Math 模块
当需要mathn时,Math模块更改如下:
标准数学模块行为:
Math.sqrt(4/9) # => 0.0
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9) # => Errno::EDOM: Numerical argument out of domain - sqrt
在需要'mathn'之后,这个更改为:
require 'mathn'
Math.sqrt(4/9) # => 2/3
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9) # => Complex(0, 2/3)
数学模块包含基本三角函数和超越函数的模块函数。请参阅Float类以获取定义Ruby浮点精度的常量列表。
域和codomains仅适用于真实(不复杂)的数字。
常量
E
数学常数E(e)定义为浮点数。
PI
数学常量PI定义为浮点数。
公共类方法
acos(x) → Float Show source
计算x的反余弦。 返回0..PI。
Domain: -1, 1
Codomain: 0, PI
Math.acos(0) == Math::PI/2 #=> true
static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("acos"
return DBL2NUM(acos(d)
}
acosh(x) → Float Show source
计算x的反双曲余弦。
Domain: [1, INFINITY)
Codomain: [0, INFINITY)
Math.acosh(1) #=> 0.0
static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x
/* check for domain error */
if (d < 1.0) domain_error("acosh"
return DBL2NUM(acosh(d)
}
asin(x) → Float Show source
计算x的反正弦。 返回-PI / 2..PI / 2。
Domain: -1, -1
Codomain: -PI/2, PI/2
Math.asin(1) == Math::PI/2 #=> true
static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("asin"
return DBL2NUM(asin(d)
}
asinh(x) → Float Show source
计算x的反双曲正弦。
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.asinh(1) #=> 0.881373587019543
static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x))
}
atan(x) → Float Show source
计算x的反正切。 返回-PI / 2..PI / 2。
Domain: (-INFINITY, INFINITY)
Codomain: (-PI/2, PI/2)
Math.atan(0) #=> 0.0
static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x))
}
atan2(y, x) → Float Show source
计算给定y和x的反正切。 返回范围-PI..PI中的Float。 返回值是笛卡尔平面的正x轴与其坐标(x,y)给出的点之间的角度弧度。
Domain: (-INFINITY, INFINITY)
Codomain: -PI, PI
Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
Math.atan2(-0.0, 1.0) #=> -0.0
Math.atan2(0.0, 1.0) #=> 0.0
Math.atan2(1.0, 1.0) #=> 0.7853981633974483
Math.atan2(1.0, 0.0) #=> 1.5707963267948966
Math.atan2(1.0, -1.0) #=> 2.356194490192345
Math.atan2(0.0, -1.0) #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x
dy = Get_Double(y
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy
if (!signbit(dy))
return DBL2NUM(M_PI
return DBL2NUM(-M_PI
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz
}
else {
const double dz = (M_PI / 4.0
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz
}
}
#endif
return DBL2NUM(atan2(dy, dx)
}
atanh(x) → Float Show source
计算x的反双曲正切。
Domain: (-1, 1)
Codomain: (-INFINITY, INFINITY)
Math.atanh(1) #=> Infinity
static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x
/* check for domain error */
if (d < -1.0 || +1.0 < d) domain_error("atanh"
/* check for pole error */
if (d == -1.0) return DBL2NUM(-INFINITY
if (d == +1.0) return DBL2NUM(+INFINITY
return DBL2NUM(atanh(d)
}
cbrt(x) → Float Show source
返回x的立方体根。
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x|
p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
# [-8, -2.0, -8.0]
# [-7, -1.91293118277239, -7.0]
# [-6, -1.81712059283214, -6.0]
# [-5, -1.7099759466767, -5.0]
# [-4, -1.5874010519682, -4.0]
# [-3, -1.44224957030741, -3.0]
# [-2, -1.25992104989487, -2.0]
# [-1, -1.0, -1.0]
# [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.25992104989487, 2.0]
# [3, 1.44224957030741, 3.0]
# [4, 1.5874010519682, 4.0]
# [5, 1.7099759466767, 5.0]
# [6, 1.81712059283214, 6.0]
# [7, 1.91293118277239, 7.0]
# [8, 2.0, 8.0]
# [9, 2.0800838230519, 9.0]
static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cbrt(Get_Double(x))
}
cos(x) → Float Show source
计算x的余弦(以弧度表示)。 返回-1.0..1.0范围内的Float值。
Domain: (-INFINITY, INFINITY)
Codomain: -1, 1
Math.cos(Math::PI) #=> -1.0
static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x))
}
cosh(x) → Float Show source
计算x的双曲余弦(以弧度表示)。
Domain: (-INFINITY, INFINITY)
Codomain: [1, INFINITY)
Math.cosh(0) #=> 1.0
static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x))
}
erf(x) → Float Show source
计算x的误差函数。
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x))
}
erfc(x) → Float Show source
计算x的互补误差函数。
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x))
}
exp(x) → Float Show source
返回e ** x。
Domain: (-INFINITY, INFINITY)
Codomain: (0, INFINITY)
Math.exp(0) #=> 1.0
Math.exp(1) #=> 2.718281828459045
Math.exp(1.5) #=> 4.4816890703380645
static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x))
}
frexp(x) → fraction, exponent()
返回包含归一化分数(Float)和指数(Integer)的两元素数组x
。
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
fraction * 2**exponent #=> 1234.0
static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)
}
gamma(x) → Float Show source
计算x的伽玛函数。
请注意,对于整数n> 0,gamma(n)与fact(n-1)相同。但是gamma(n)返回float并且可以是近似值。
def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
# [2, 1.0, 1]
# [3, 2.0, 2]
# [4, 6.0, 6]
# [5, 24.0, 24]
# [6, 120.0, 120]
# [7, 720.0, 720]
# [8, 5040.0, 5040]
# [9, 40320.0, 40320]
# [10, 362880.0, 362880]
# [11, 3628800.0, 3628800]
# [12, 39916800.0, 39916800]
# [13, 479001600.0, 479001600]
# [14, 6227020800.0, 6227020800]
# [15, 87178291200.0, 87178291200]
# [16, 1307674368000.0, 1307674368000]
# [17, 20922789888000.0, 20922789888000]
# [18, 355687428096000.0, 355687428096000]
# [19, 6.402373705728e+15, 6402373705728000]
# [20, 1.21645100408832e+17, 121645100408832000]
# [21, 2.43290200817664e+18, 2432902008176640000]
# [22, 5.109094217170944e+19, 51090942171709440000]
# [23, 1.1240007277776077e+21, 1124000727777607680000]
# [24, 2.5852016738885062e+22, 25852016738884976640000]
# [25, 6.204484017332391e+23, 620448401733239439360000]
# [26, 1.5511210043330954e+25, 15511210043330985984000000]
static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x
/* check for domain error */
if (isinf(d) && signbit(d)) domain_error("gamma"
if (d == floor(d)) {
if (d < 0.0) domain_error("gamma"
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]
}
}
return DBL2NUM(tgamma(d)
}
hypot(x, y) → Float Show source
返回sqrt(x ** 2 + y ** 2),即边x和y的直角三角形的斜边。
Math.hypot(3, 4) #=> 5.0
static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y))
}
ldexp(fraction, exponent) → float Show source
返回fraction
*(2 ** exponent
)的值。
fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent) #=> 1234.0
static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n))
}
lgamma(x) → float, -1 or 1()
计算x的对数伽马和x的伽马符号。
:: lgamma与以下形式相同:
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
但这是为了避免大的x的 :: gamma溢出。
Math.lgamma(0) #=> [Infinity, 1]
static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma"
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1)
}
v = DBL2NUM(lgamma_r(d, &sign)
return rb_assoc_new(v, INT2FIX(sign)
}
log(x) → Float Show source
log(x, base) → Float
返回x的对数。 如果再给出第二个参数,它将成为对数的基础。 否则它是e(对于自然对数)。
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log(0) #=> -Infinity
Math.log(1) #=> 0.0
Math.log(Math::E) #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3) #=> 2.2618595071429146
static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
VALUE x, base;
double d;
rb_scan_args(argc, argv, "11", &x, &base
d = math_log1(x
if (argc == 2) {
d /= math_log1(base
}
return DBL2NUM(d
}
log10(x) → Float Show source
返回x的基数10的对数。
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log10(1) #=> 0.0
Math.log10(10) #=> 1.0
Math.log10(10**100) #=> 100.0
static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits
/* check for domain error */
if (d < 0.0) domain_error("log10"
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY
return DBL2NUM(log10(d) + numbits * log10(2) /* log10(d * 2 ** numbits) */
}
log2(x) → Float Show source
返回x的基数2的对数。
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log2(1) #=> 0.0
Math.log2(2) #=> 1.0
Math.log2(32768) #=> 15.0
Math.log2(65536) #=> 16.0
static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits
/* check for domain error */
if (d < 0.0) domain_error("log2"
/* check for pole error */
if (d == 0.0) return DBL2NUM(-INFINITY
return DBL2NUM(log2(d) + numbits /* log2(d * 2 ** numbits) */
}
rsqrt(a) Show source
计算非负数的平方根。此方法由Math.sqrt
进行内部使用。
# File lib/mathn.rb, line 119
def rsqrt(a)
if a.kind_of?(Float)
sqrt!(a)
elsif a.kind_of?(Rational)
rsqrt(a.numerator)/rsqrt(a.denominator)
else
src = a
max = 2 ** 32
byte_a = [src & 0xffffffff]
# ruby's bug
while (src >= max) and (src >>= 32)
byte_a.unshift src & 0xffffffff
end
answer = 0
main = 0
side = 0
for elm in byte_a
main = (main << 32) + elm
side <<= 16
if answer != 0
if main * 4 < side * side
applo = main.div(side)
else
applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
end
else
applo = sqrt!(main).to_i + 1
end
while (x = (side + applo) * applo) > main
applo -= 1
end
main -= x
answer = (answer << 16) + applo
side += applo * 2
end
if main == 0
answer
else
sqrt!(a)
end
end
end
sin(x) → Float Show source
计算x的正弦值(以弧度表示)。 返回-1.0..1.0范围内的Float。
Domain: (-INFINITY, INFINITY)
Codomain: -1, 1
Math.sin(Math::PI/2) #=> 1.0
static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x))
}
sinh(x) → Float Show source
计算x的双曲正弦(以弧度表示)。
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.sinh(0) #=> 0.0
static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x))
}
sqrt(a) Show source
计算a的平方根。 如果可能的话,它使用Complex和Rational来避免舍入错误。
Math.sqrt(4/9) # => 2/3
Math.sqrt(- 4/9) # => Complex(0, 2/3)
Math.sqrt(4.0/9.0) # => 0.666666666666667
# File lib/mathn.rb, line 103
def sqrt(a)
if a.kind_of?(Complex)
sqrt!(a)
elsif a.respond_to?(:nan?) and a.nan?
a
elsif a >= 0
rsqrt(a)
else
Complex(0,rsqrt(-a))
end
end
tan(x) → Float Show source
计算x的正切(以弧度表示)。
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.tan(0) #=> 0.0
static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(tan(Get_Double(x))
}
tanh(x) → Float Show source
计算x的双曲正切(以弧度表示)。
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.tanh(0) #=> 0.0
static VALUE
math_tanh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(tanh(Get_Double(x))
}
私有实例方法
rsqrt(a) Show source
计算非负数的平方根。 此方法由Math.sqrt内部使用。
# File lib/mathn.rb, line 119
def rsqrt(a)
if a.kind_of?(Float)
sqrt!(a)
elsif a.kind_of?(Rational)
rsqrt(a.numerator)/rsqrt(a.denominator)
else
src = a
max = 2 ** 32
byte_a = [src & 0xffffffff]
# ruby's bug
while (src >= max) and (src >>= 32)
byte_a.unshift src & 0xffffffff
end
answer = 0
main = 0
side = 0
for elm in byte_a
main = (main << 32) + elm
side <<= 16
if answer != 0
if main * 4 < side * side
applo = main.div(side)
else
applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
end
else
applo = sqrt!(main).to_i + 1
end
while (x = (side + applo) * applo) > main
applo -= 1
end
main -= x
answer = (answer << 16) + applo
side += applo * 2
end
if main == 0
answer
else
sqrt!(a)
end
end
end
sqrt(a) Show source
计算a的平方根。 如果可能的话,它使用Complex和Rational来避免舍入错误。
Math.sqrt(4/9) # => 2/3
Math.sqrt(- 4/9) # => Complex(0, 2/3)
Math.sqrt(4.0/9.0) # => 0.666666666666667
# File lib/mathn.rb, line 103
def sqrt(a)
if a.kind_of?(Complex)
sqrt!(a)
elsif a.respond_to?(:nan?) and a.nan?
a
elsif a >= 0
rsqrt(a)
else
Complex(0,rsqrt(-a))
end
end